

Module 1: Foundations of Microcomputer Systems
This module is meticulously crafted to establish a robust foundational understanding
of microcomputer systems, which is indispensable for mastering microcontrollers.
We will commence with a precise definition of what constitutes a microcomputer
system, meticulously tracing its evolutionary trajectory from nascent forms to
contemporary architectures, and then comprehensively surveying its myriad
applications across diverse domains. Following this, we will undertake an exhaustive
dissection of the system's core functional components: the Central Processing Unit
(CPU), Memory, and Input/Output (I/O) units. Each component's intrinsic function,
internal architecture, and symbiotic relationship within the system will be elucidated
in detail.

The subsequent section will delve deeply into the critical aspects of memory
organization and addressing, providing a granular understanding of how data and
instructions are physically stored and logically accessed. We will distinguish between
various memory technologies (RAM and ROM) and their subtypes, detailing their
operational characteristics and typical use cases. A thorough grasp of data
representation and fundamental number systems is paramount in digital electronics;
thus, we will dedicate significant attention to binary and hexadecimal systems,
illustrating their conversion methodologies with concrete numerical examples and
emphasizing their direct relevance in the context of microcontrollers. Finally, we will
furnish an introductory exposition to assembly language. This will cover its
fundamental purpose, its intrinsic relationship with machine code, and basic
structural elements, thereby preparing you for the low-level programming paradigms
inherent in microcontroller development without prematurely delving into complex
coding exercises.

1.1 Introduction to Microcomputer Systems: Definition, Evolution, and
Applications

At its essence, a microcomputer system is a compact, cost-effective digital
computing apparatus where the primary processing unit, the Central Processing Unit
(CPU), is realized as a microprocessor. This distinguishes it from larger, more
centralized computing paradigms such as mainframe computers or minicomputers.
The hallmark of microcomputer systems lies in their inherent compactness, economic
feasibility, and, crucially, their pervasive adoption in dedicated, often embedded,
applications where a specific set of control or processing tasks is performed.

Precise Definition: A microcomputer system fundamentally integrates three primary
functional blocks:

1. Microprocessor (CPU): The computational and control core.
2. Memory: Storage for program instructions and data.
3. Input/Output (I/O) Interface: Mechanisms for interaction with external devices

and the real world.

These components are typically interconnected via a system of electrical pathways
known as buses, often residing on a single printed circuit board (PCB) or, in the case
of a microcontroller, frequently integrated onto a single monolithic integrated circuit
(IC). The term "microcontroller" is thus a specialized subset of a microcomputer
system, engineered for embedded, real-time control applications with integrated
peripherals.

Evolutionary Trajectory: The genesis and subsequent evolution of microcomputer
systems are inextricably linked to breakthroughs in semiconductor technology,
particularly the relentless miniaturization and increasing complexity of integrated
circuits (ICs), culminating in the invention and refinement of the microprocessor.

● First Generation (Early 1970s): The Dawn of the Microprocessor
○ Defining Characteristic: The commercialization of the first

general-purpose microprocessors.
○ Key Milestones: Intel's 4004 (1971), a 4-bit processor, revolutionized

calculator design. This was swiftly followed by the 8008 and then the
highly influential Intel 8080 (1974), an 8-bit processor. The 8080 could
address 64 KB of memory and was pivotal in the development of early
personal computers (e.g., Altair 8800).

○ Technological Context: Large-scale integration (LSI) of transistors,
limited clock speeds (tens of KHz to a few MHz), and basic instruction
sets.

○ Typical Applications: Simple calculators, point-of-sale terminals, early
hobbyist computers.

● Second Generation (Late 1970s - Early 1980s): The Rise of 16-bit Architectures
○ Defining Characteristic: Introduction of 16-bit microprocessors,

significantly expanding addressable memory and computational power.
○ Key Milestones: Intel 8086/8088 (1978/1979) processors enabled the

development of the IBM PC, setting a de facto standard for personal
computing. Motorola 68000 (1979) was adopted in systems like the
Apple Macintosh and Amiga, known for its orthogonal instruction set.

○ Technological Context: Further advancements in LSI, leading to higher
clock speeds (up to 10-20 MHz) and more sophisticated instruction sets
supporting features like segmentation and pipelining (basic forms).
Memory chips became denser (e.g., 64 KB DRAMs).

○ Typical Applications: Personal computers, word processors, early
embedded industrial controllers, dedicated medical equipment.

● Third Generation (Mid-1980s - Mid-1990s): The Era of 32-bit Processors and
Pipelining

○ Defining Characteristic: Transition to 32-bit architectures, enabling
direct addressing of much larger memory spaces and introducing
advanced features.

○ Key Milestones: Intel 80386 (1985) introduced true 32-bit processing,
paging, and a protected mode of operation, facilitating multitasking
operating systems. The 80486 integrated a floating-point unit (FPU) and
on-chip cache. The original Pentium (1993) introduced superscalar
architecture (executing multiple instructions per clock cycle).

○ Technological Context: Very-large-scale integration (VLSI) allowed
millions of transistors on a chip. Clock speeds reached hundreds of
MHz. Sophisticated memory hierarchies (cache memory) became
common. Microcontrollers began integrating more diverse peripherals
(Timers, UARTs, ADCs) onto the same chip as the CPU.

○ Typical Applications: Advanced personal computers, workstations,
servers, complex industrial automation, early multimedia devices,
sophisticated automotive control systems.

● Fourth Generation (Late 1990s - Present): System-on-Chip (SoC) and Pervasive
Computing

○ Defining Characteristic: Integration of entire systems (CPU, memory,
extensive peripherals, specialized accelerators) onto a single silicon die
(SoC). Emphasis on low power consumption, connectivity, and
specialized architectures.

○ Key Milestones: The emergence of highly power-efficient architectures
like ARM (Acorn RISC Machine) for mobile and embedded applications.
Multi-core processors became standard for general computing. The rise
of microcontrollers with integrated Ethernet, USB, and wireless
communication capabilities.

○ Technological Context: Ultra-large-scale integration (ULSI) pushing
transistor counts into billions. Clock speeds in GHz range. Focus on
power efficiency, real-time operating systems (RTOS), and extensive
on-chip peripherals.

○ Typical Applications: Smartphones, tablets, IoT devices, wearable
technology, advanced robotics, autonomous vehicles, smart grid
infrastructure, AI at the edge.

Diverse Applications of Microcomputer Systems: The omnipresence of
microcomputer systems, particularly in their microcontroller guise, means they are
embedded in virtually every facet of modern existence. Their adaptability stems from
their ability to be tailored for specific tasks, often operating autonomously and
continuously.

● Consumer Electronics: Powering handheld devices (e.g., smartphones,
smartwatches), home appliances (e.g., washing machines, refrigerators with
smart features, microwave ovens), entertainment systems (e.g., smart TVs,
gaming consoles), and digital cameras.

● Automotive Industry: Central to engine control units (ECUs), anti-lock braking
systems (ABS), electronic stability control (ESC), airbag deployment systems,
advanced driver-assistance systems (ADAS), infotainment systems, and
battery management systems in electric vehicles.

● Industrial Control and Automation: Found in programmable logic controllers
(PLCs), robotics, automated assembly lines, process control systems in
manufacturing plants, smart sensors, and motor control units.

● Medical and Healthcare Devices: Integral to pacemakers, insulin pumps, blood
glucose monitors, MRI scanners, patient monitoring systems, and
sophisticated diagnostic equipment.

● Aerospace and Defense: Employed in avionics (aircraft control systems),
missile guidance systems, satellite communication systems, and drone control
systems, where reliability and real-time performance are paramount.

● Internet of Things (IoT): The backbone of smart homes (e.g., smart
thermostats, lighting systems, security cameras), smart city infrastructure
(e.g., smart streetlights, environmental sensors), smart agriculture, and
industrial IoT (IIoT) applications.

● Communication Infrastructure: Embedded in network routers, modems,
switches, wireless access points, and cellular base stations, facilitating data
transmission and network management.

1.2 Building Blocks of a Microcomputer: CPU, Memory, and I/O Units – A
Detailed Breakdown

A microcomputer system functions as a cohesive unit through the orchestrated
interaction of three fundamental building blocks: the Central Processing Unit (CPU),
the Memory subsystem, and the Input/Output (I/O) subsystem. These distinct
components are interlinked and communicate via a set of parallel electrical conduits
known as buses.

● Address Bus: This is a unidirectional bus, meaning information flows only
from the CPU to memory or I/O devices. Its primary function is to carry binary
addresses generated by the CPU to select a specific memory location or an I/O
port. The number of individual lines (bits) in the address bus directly
determines the maximum number of unique memory or I/O locations that the
CPU can access.

○ Formula: If an address bus has N lines, the maximum addressable
locations are 2N.

○ Numerical Example:
■ An 8-bit address bus (N=8) can address 28=256 unique locations.
■ A 16-bit address bus (N=16) can address 216=65,536 unique

locations, commonly expressed as 64textKB (since 1textKB=1024
bytes).

■ A 32-bit address bus (N=32) can address
232approx4.29textbillion unique locations, or 4textGB
(gigabytes).

● Data Bus: This is a bidirectional bus, allowing data to flow in both
directions—from the CPU to memory/I/O (write operation) or from memory/I/O
to the CPU (read operation). The width of the data bus (e.g., 8-bit, 16-bit, 32-bit)
dictates the amount of data that can be transferred simultaneously in a single
read or write operation. A wider data bus generally leads to higher data
throughput.

○ Numerical Example: An 8-bit data bus can transfer 1 byte (8 bits) at a
time. A 16-bit data bus can transfer 2 bytes (16 bits) at a time.

● Control Bus: This bus carries a variety of synchronization and control signals
from the CPU to other components, and sometimes from other components
back to the CPU (e.g., interrupt requests). These signals manage the flow of

data, indicate the type of operation (read/write), synchronize timing, and handle
system events.

○ Examples of Control Signals:
■ READ (asserted low, overlineRD): Indicates the CPU wants to read

data from memory or an I/O device.
■ WRITE (asserted low, overlineWR): Indicates the CPU wants to

write data to memory or an I/O device.
■ MEMORY/IO (or M/\overline{IO}): Selects whether the

current operation is for memory or an I/O device.
■ RESET: Initializes the CPU and entire system to a known starting

state.
■ CLOCK: Provides timing synchronization for all operations.

1.2.1 Central Processing Unit (CPU)

The CPU is the algorithmic and logical heart of the microcomputer system. It is solely
responsible for fetching, decoding, and executing program instructions, performing
all arithmetic and logical computations, and orchestrating the overall flow of data and
control signals throughout the entire system. Its internal architecture typically
subdivides into several interconnected units:

● Arithmetic Logic Unit (ALU):
○ Function: The ALU is the digital circuit within the CPU that performs all

arithmetic operations (addition, subtraction, multiplication, division) and
logical operations (AND, OR, NOT, XOR, comparisons like equality,
greater than). It takes operands as input and produces a result along
with status flags.

○ Input/Output: Receives data from CPU registers or memory, receives
control signals from the Control Unit specifying the operation, and
outputs the computed result back to a register or memory, along with
status flags (e.g., Zero Flag, Carry Flag, Sign Flag, Parity Flag).

○ Numerical Example (Arithmetic Operation): To perform the operation
5+3:

■ The value '5' is loaded into an internal register (e.g.,
Accumulator).

■ The value '3' is loaded into another internal register.
■ The Control Unit sends signals to the ALU to perform an "ADD"

operation.
■ The ALU calculates 5+3=8.
■ The result '8' is stored back into a register.
■ If the addition caused a carry-out (e.g., adding 250+10 in an 8-bit

system, result 260, which is 4 with a carry), the Carry Flag would
be set to indicate an overflow.

● Control Unit (CU):
○ Function: The CU is the traffic controller of the CPU. It interprets

instructions fetched from memory (decoding), generates the precise
sequence of control signals required to execute those instructions, and

synchronizes the operation of all other components within the CPU
(ALU, registers) and the external memory and I/O devices via the control
bus. It essentially manages the entire instruction cycle (fetch, decode,
execute, write-back).

○ Key Responsibilities:
■ Instruction Fetch: Reads the next instruction from memory (using

the Program Counter).
■ Instruction Decode: Interprets the fetched instruction to

determine what operation needs to be performed.
■ Operand Fetch: Locates and retrieves any necessary data

(operands) from registers or memory.
■ Execution Control: Directs the ALU to perform the operation, or

controls data movement.
■ Result Write-back: Stores the result of the operation back into

registers or memory.
● Registers:

○ Function: Registers are small, high-speed, temporary storage locations
located directly within the CPU. They are the fastest form of memory
access available to the CPU and are used to hold data, addresses, and
control information during instruction execution. Their limited number is
compensated by their immense speed, crucial for CPU performance.

○ Common Types and Their Roles:
■ Program Counter (PC): (Also known as Instruction Pointer in

some architectures) Holds the memory address of the next
instruction to be fetched and executed. After fetching an
instruction, the PC is automatically incremented to point to the
subsequent instruction in sequential program flow.

■ Numerical Example: If the PC contains 0100textH
(hexadecimal), the CPU will fetch the instruction at
memory address 0100textH. If that instruction is 1 byte
long, the PC will then update to 0101textH to point to the
next instruction.

■ Instruction Register (IR): Temporarily stores the binary code of
the instruction that has just been fetched from memory and is
currently being decoded and executed by the Control Unit.

■ Accumulator (A): A primary general-purpose register often used
to store the result of arithmetic and logical operations. Many
operations implicitly use the accumulator as a source or
destination operand.

■ Numerical Example: If ADD B instruction is executed, it
might add the content of register B to the content of the
Accumulator, storing the result back in the Accumulator.

■ Stack Pointer (SP): Contains the memory address of the current
"top" of the stack. The stack is a dedicated region of RAM used
for temporary data storage (e.g., saving register contents before
a subroutine call), passing parameters to subroutines, and

handling interrupts. Operations like PUSH (store data onto stack)
and POP (retrieve data from stack) manipulate the SP.

■ Numerical Example: If the stack grows downwards in
memory and SP points to F000textH, a PUSH operation
might store data at F000textH and then decrement SP to
EFFFtextH. A subsequent POP would retrieve data from
EFFFtextH and then increment SP to F000textH.

■ General Purpose Registers (e.g., B, C, D, E, H, L in 8085; AX, BX,
CX, DX in 8086): These are flexible registers that can be used by
the programmer to temporarily store data values during program
execution, perform intermediate calculations, or act as pointers
to memory locations. Their number and organization vary
significantly between different CPU architectures.

■ Flag Register (Status Register): A special register consisting of
individual bits (flags) that are set or cleared by the ALU after an
operation to indicate the status or characteristics of the result
(e.g., zero, carry, sign, overflow, parity). These flags are then
used by conditional jump or branch instructions to alter program
flow.

1.2.2 Memory Subsystem

Memory is the digital repository within the microcomputer system where all program
instructions (the software) and the data that these programs manipulate are stored. Its
characteristics are crucial to system performance and functionality. Memory is
broadly classified into two principal categories based on its volatility and access
method:

● Read-Only Memory (ROM):
○ Characteristic: Non-volatile memory. This means that its contents

persist even when the power supply to the device is removed. ROM is
designed for data that is permanent or changes infrequently. It is
primarily used to store critical, immutable software such as the
system's boot-up instructions (often called BIOS in PCs or firmware in
microcontrollers), fixed application code in embedded systems, or
lookup tables.

○ Access Type: Primarily for reading. Writing to ROM is either impossible
or requires special, time-consuming procedures.

○ Types of ROM:
■ Mask ROM (MROM): Programmed during the manufacturing

process by the semiconductor foundry. The data is physically
etched into the silicon. It is the most cost-effective for very high
volume production once the design is finalized, but it is
completely non-reprogrammable.

■ Programmable ROM (PROM): Can be programmed once by the
user or manufacturer using a special device called a PROM
programmer. It typically uses fuses that are "blown" (burned out)

to represent binary '0's or '1's. Once programmed, it cannot be
erased.

■ Erasable Programmable ROM (EPROM): Can be erased by
exposing the chip to a strong source of ultraviolet (UV) light.
After erasure, it can be reprogrammed using an EPROM
programmer. EPROMs are recognizable by a transparent quartz
window on their package.

■ Electrically Erasable Programmable ROM (EEPROM): Offers the
convenience of electrical erasure and reprogramming, byte by
byte, without the need for UV light. This allows for in-circuit
programming (ISP) or in-application programming (IAP), making
it highly flexible for storing configuration data or calibration
values that might need occasional updates. However, it typically
has a limited number of write/erase cycles (e.g., 10,000 to 100,000
cycles).

■ Flash Memory: A modern type of EEPROM that is a dominant
choice for non-volatile storage in microcontrollers and other
embedded systems. Unlike traditional EEPROM, Flash memory
can be erased and reprogrammed in large blocks or sectors,
rather than byte-by-byte. This makes it significantly faster for
large data transfers (e.g., updating firmware). It also offers higher
densities and generally better endurance than byte-erasable
EEPROM. There are various types, including NOR Flash (random
access, code execution) and NAND Flash (sequential access,
mass storage).

● Random Access Memory (RAM):
○ Characteristic: Volatile memory. Its contents are lost immediately when

the power supply is removed. RAM is the primary working memory for
the CPU. It is used for temporary storage of data that the CPU is actively
processing, variables, intermediate results, and the currently executing
program instructions (after they are loaded from non-volatile storage).

○ Access Type: Allows both reading and writing of data at very high
speeds. The term "Random Access" means that any memory location
can be accessed directly in approximately the same amount of time,
regardless of its physical location.

○ Types of RAM:
■ Static RAM (SRAM):

■ Mechanism: Stores each bit of data using a latch or
flip-flop circuit, typically composed of 4-6 transistors.

■ Key Features: Faster access times compared to DRAM.
Does not require periodic refreshing to retain data, as long
as power is supplied. More expensive and consumes more
power per bit than DRAM due to its more complex internal
structure.

■ Typical Use: Cache memory within CPUs, registers, small
but critical data buffers in microcontrollers, and
applications where speed is paramount and cost/density
are less critical.

■ Dynamic RAM (DRAM):
■ Mechanism: Stores each bit of data as an electrical charge

in a tiny capacitor.
■ Key Features: Much denser (more bits per unit area) and

less expensive than SRAM because each bit requires only
one transistor and one capacitor. However, the charge in
the capacitors leaks over time, so DRAM requires periodic
refreshing (recharging the capacitors) to retain its data.
This refreshing process introduces a slight delay and
increases power consumption compared to SRAM during
active use.

■ Typical Use: The primary main memory (system RAM) in
personal computers, servers, and many consumer
electronics due to its high density and low cost. Less
common as on-chip memory in simple microcontrollers,
but found in more powerful System-on-Chip (SoC)
microcontrollers.

1.2.3 Input/Output (I/O) Units

I/O units are the crucial interfaces that enable a microcomputer system to interact
with its external environment. They facilitate the reception of data from peripheral
devices (input) and the transmission of processed data to other devices or the user
(output).

● Input Devices: These are hardware components that convert real-world
phenomena or human actions into digital signals that the microcomputer can
process.

○ Examples: Keyboards (user input), mice (pointer control), various
sensors (e.g., temperature sensors, pressure sensors, light sensors,
accelerometers converting physical quantities into electrical signals),
switches (detecting open/closed states), microphones (audio input),
cameras (visual input), and specialized data acquisition modules like
Analog-to-Digital Converters (ADCs) that convert continuous analog
signals into discrete digital values.

● Output Devices: These are hardware components that convert digital signals
from the microcomputer into physical actions, visual displays, audio, or
signals for other devices.

○ Examples: Displays (e.g., LCDs for character/graphic output, LEDs for
status indication), printers (hardcopy output), speakers (audio output),
motors (mechanical motion), relays (electrical switching), and
Digital-to-Analog Converters (DACs) that convert digital values back
into continuous analog signals (e.g., for audio amplification or
controlling analog actuators).

● I/O Ports/Interfaces: These are the dedicated pathways, both logical and often
physical, through which the CPU communicates with external I/O devices. An
I/O port is essentially a register or a set of registers that the CPU can read from

or write to, which are directly connected to the pins of the microcontroller or
dedicated I/O interface chips.

○ Types of I/O Interfaces:
■ Parallel I/O: Transfers multiple bits of data simultaneously over

multiple parallel lines (e.g., 8-bit, 16-bit wide). This is faster for
transferring larger chunks of data but requires more physical
pins. Examples include dedicated parallel port interfaces (like the
8255 Programmable Peripheral Interface) or General Purpose
Input/Output (GPIO) pins on microcontrollers.

■ Serial I/O: Transfers data one bit at a time over a single data line
(or a few lines for control). While slower for raw data throughput
compared to parallel, it requires fewer pins and is suitable for
long-distance communication. Examples include Universal
Asynchronous Receiver/Transmitter (UART) for standard serial
communication (RS-232, TTL serial), Serial Peripheral Interface
(SPI), and Inter-Integrated Circuit (I2C).

○ Addressing I/O Ports: Just like memory locations, each I/O port has a
unique address. The CPU distinguishes between memory access and
I/O access either by having separate address spaces (I/O-mapped I/O) or
by mapping I/O ports into the memory address space (memory-mapped
I/O). The control bus signals (e.g., M/IO) indicate whether the current
address on the address bus refers to a memory location or an I/O port.

1.3 Memory Organization and Addressing: RAM, ROM, and Different
Memory Types

The efficacy of any microcomputer system hinges critically on its memory subsystem.
Memory organization refers to the logical structure and physical arrangement of
storage locations, while memory addressing is the mechanism by which the CPU
uniquely identifies and accesses these individual locations.

Memory Organization Fundamentals: At its most basic level, memory is
conceptualized as a vast array of storage cells, each capable of holding a single bit of
information. These bits are then grouped into larger, more manageable units.

● Byte-addressable Memory: This is the overwhelmingly dominant memory
organization in modern microcomputer systems. In a byte-addressable system,
the smallest unit of memory that can be uniquely identified and accessed by a
distinct address is a byte (8 bits). This means if you have a memory chip with
1024 bytes, it will have addresses from 0 to 1023, where each address
corresponds to one byte.

○ Example: If memory location 0010textH contains the byte A5textH, and
location 0011textH contains 3CtextH, these are two distinct, individually
addressable bytes.

● Word-addressable Memory: In some older or specialized architectures,
memory might be organized in "words," where a word is typically the native
data size of the CPU (e.g., 16 bits, 32 bits). In a word-addressable system, each
unique address refers to an entire word, not an individual byte.

○ Example: If a system is 16-bit word-addressable, and address 0000textH
contains the word 1234textH, then the byte 12textH would be at the
higher byte address within that word, and 34textH at the lower byte
address. To access an individual byte within a word, additional logic (or
instructions) might be required. Modern architectures often bridge this
by providing byte-level access even if the underlying memory is
word-oriented.

Memory Addressing Principles: The CPU initiates all memory access operations. To
perform a read or write, the CPU places the binary address of the desired memory
location onto the address bus. Concurrently, it asserts the appropriate control signals
(e.g., READ or WRITE) on the control bus. The memory controller or decoding logic
then interprets this address to select the correct memory chip and the specific
location within that chip.

● Maximum Addressable Memory: As discussed in Section 1.2.1, the number of
address lines determines the maximum addressable memory. For an N-bit
address bus, the total number of distinct memory locations is 2N.

○ Calculation Example: Consider a microcontroller with a 20-bit address
bus. Maximum addressable memory = 220 bytes.
220=(210)times(210)=1024times1024=1,048,576 bytes. This is exactly
1textMB (Megabyte). So, a 20-bit address bus can directly address 1
Megabyte of memory.

● Memory Decoding: When multiple memory chips (or other addressable
devices) are connected to the same address bus, a mechanism is needed to
ensure that only the intended chip responds to a given address. This
mechanism is called memory decoding. Decoding logic (often implemented
using logic gates like AND, OR, NOT, or specialized decoder ICs) takes certain
bits from the address bus as input and generates a chip-select (overlineCS)
signal for each memory chip. Only the chip whose overlineCS is active will
enable its data bus drivers and respond to the CPU's request.

○ Numerical Example (Simple Decoding): Assume a system with a 16-bit
address bus (A15-A0) and two 8 KB (8192 byte) RAM chips. Each 8 KB
chip needs 213=8192 internal addresses. So, address lines A0-A12 are
used to select locations within each chip. The remaining address lines
(A13, A14, A15) can be used for chip selection. Let's say:

■ RAM Chip 1: Enabled when A15=0, A14=0, A13=0. Its address
range would be 0000textH to 1FFFtextH. (Binary
000_0000_0000_0000_2 to 000_1111_1111_1111_2)

■ RAM Chip 2: Enabled when A15=0, A14=0, A13=1. Its address
range would be 2000textH to 3FFFtextH. (Binary
001_0000_0000_0000_2 to 001_1111_1111_1111_2)

○ The decoding logic would look at A15, A14, A13. If all are 0, it activates
overlineCS for RAM Chip 1. If A15=0, A14=0, A13=1, it activates
overlineCS for RAM Chip 2. This ensures no conflicts arise when the
CPU generates addresses.

Memory Map: A memory map is a logical representation or diagram that illustrates
how the entire address space of a microcomputer system is allocated and partitioned
among various memory devices (RAM, ROM) and I/O devices (if memory-mapped). It
is a crucial design document for both hardware engineers (for interconnection) and
software developers (for knowing where to place code and data, and how to access
peripherals).

● Key Aspects of a Memory Map:
○ Address Ranges: Specifies the starting and ending physical addresses

for each component.
○ Component Type: Identifies what device occupies a particular address

range (e.g., ROM, SRAM, specific I/O controller).
○ Read/Write Permissions: Indicates whether a memory region is

readable, writable, or executable.
○ Gaps: Often, there are unassigned "gaps" in the address space.

Accessing these unassigned addresses typically results in a bus error
or no response.

● Example Memory Map (Simplified 8-bit Microcontroller with 16-bit Address
Bus): Total Address Space: 0000textH to FFFFtextH (64 KB)

Component Start
Address

End
Address

Size Notes

On-Chip ROM
(Flash)

0000textH 1FFFtextH 8 KB Program memory,
non-volatile

On-Chip RAM
(SRAM)

2000textH 27FFtextH 2 KB Data memory, volatile, fast
access

Reserved/Unused 2800textH 3FFFtextH 6 KB Available for future
expansion

External RAM
(DRAM)

4000textH 7FFFtextH 16 KB Optional external data
memory if needed

On-Chip
Peripherals

FE00textH FEFFtext
H

256
bytes

I/O Registers, Timers, UART
(memory-mapped)

Reserved/Unused FF00textH FFFFtext
H

256
bytes

Often includes stack area or
interrupt vectors

Export to Sheets

This map provides a clear picture of how memory resources are utilized. For example,
if a program needs to store a temporary variable, it will typically be placed in the
On-Chip RAM region (2000textH to 27FFtextH). If an instruction needs to be fetched,
the CPU will look for it within the On-Chip ROM region (0000textH to 1FFFtextH).

1.4 Data Representation and Number Systems: Binary, Hexadecimal, and
Their Relevance in Microcontrollers

The fundamental language of all digital computers, including microcontrollers, is
binary. This is because the underlying electronic circuits represent information using
two distinct states, conventionally denoted as 0 and 1 (e.g., low voltage/high voltage,
off/on). Therefore, all data, instructions, memory addresses, and control signals
within a microcomputer system are ultimately processed and stored in binary form.
While binary is the machine's language, humans find it unwieldy. Thus, other number
systems like hexadecimal are used for easier human interaction.

1.4.1 Binary Number System (Base-2)

● Digits: Only two distinct digits: 0 and 1.
● Place Values: Each position in a binary number represents a power of 2,

starting from 20 (which is 1) for the rightmost digit.
1. ldots,24,23,22,21,20
2. ldots,16,8,4,2,1

● Conversion from Binary to Decimal (Base-10): To convert a binary number to
its equivalent decimal value, multiply each binary digit (bit) by its
corresponding place value (power of 2) and then sum all the products.
Formula: For a binary number represented as b_nb_n−1ldotsb_2b_1b_0, its
decimal value is:
Decimal=(b_ntimes2n)+(b_n−1times2n−1)+ldots+(b_2times22)+(b_1times21)+(b
_0times20)
Numerical Example 1: Convert the 8-bit binary number 11010011_2 to decimal.
1times27+1times26+0times25+1times24+0times23+0times22+1times21+1times2
0
=(1times128)+(1times64)+(0times32)+(1times16)+(0times8)+(0times4)+(1times2)
+(1times1) =128+64+0+16+0+0+2+1 =211_10

● Conversion from Decimal to Binary: The most common method is the
"repeated division by 2" method. Continuously divide the decimal number by 2,
keeping track of the remainder at each step. The binary equivalent is formed by
reading these remainders from bottom to top (the last remainder is the Most
Significant Bit, MSB).
Numerical Example 2: Convert the decimal number 47_10 to binary.

1. 47div2=23 remainder 1 (LSB)
2. 23div2=11 remainder 1
3. 11div2=5 remainder 1
4. 5div2=2 remainder 1
5. 2div2=1 remainder 0
6. 1div2=0 remainder 1 (MSB) Reading remainders from bottom to top, we

get 101111_2.

1.4.2 Hexadecimal Number System (Base-16)

● Digits: 16 distinct digits: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.
○ Where A represents decimal 10, B represents 11, C represents 12, D

represents 13, E represents 14, and F represents 15.
● Place Values: Each position in a hexadecimal number represents a power of

16, starting from 160 for the rightmost digit.

○ ldots,163,162,161,160
○ ldots,4096,256,16,1

● Relevance to Microcontrollers: Hexadecimal is exceptionally useful in
microcontroller development and digital systems for several reasons:

○ Compact Representation: It provides a much more compact way to
represent long binary strings.

○ Easy Conversion to/from Binary: Each hexadecimal digit perfectly
corresponds to exactly four binary digits (a nibble). This makes mental
conversion between binary and hexadecimal very fast and common
practice. This relationship is crucial for interpreting memory dumps,
instruction codes, and register contents.

○ Addressing and Data Sheets: Memory addresses, I/O port addresses,
and data values in microcontroller data sheets, programming manuals,
and debugger outputs are almost universally presented in hexadecimal.

● Relationship Table (Binary - Hexadecimal):

Decima
l

Binar
y

Hexadecim
al

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

Export to Sheets

● Conversion from Hexadecimal to Binary: Simply replace each hexadecimal
digit with its 4-bit binary equivalent from the table above.
Numerical Example 3: Convert hexadecimal B6AtextH to binary. B_16=1011_2
6_16=0110_2 A_16=1010_2 Concatenating these: B6AtextH=101101101010_2

● Conversion from Binary to Hexadecimal: Group the binary digits into sets of
four, starting from the rightmost digit (Least Significant Bit, LSB). If the
leftmost group has fewer than four bits, pad it with leading zeros. Then,
convert each 4-bit group into its single hexadecimal digit equivalent.
Numerical Example 4: Convert binary 110111010_2 to hexadecimal.

1. Group into fours from right: 0001_1011_1010_2 (added three leading
zeros for the first group)

2. Convert each group:
■ 0001_2=1_16
■ 1011_2=B_16
■ 1010_2=A_16 Concatenating these: 110111010_2=1BAtextH

● Conversion from Hexadecimal to Decimal: Multiply each hexadecimal digit by
its corresponding power of 16 and then sum the results. Remember to convert
hexadecimal letters (A-F) to their decimal equivalents (10-15) before
multiplying.
Formula: For a hexadecimal number represented as h_nh_n−1ldotsh_1h_0, its
decimal value is:
Decimal=(h_ntimes16n)+(h_n−1times16n−1)+ldots+(h_1times161)+(h_0times16
0)
Numerical Example 5: Convert hexadecimal 2DtextH to decimal. D_16=13_10
2times161+Dtimes160 =(2times16)+(13times1) =32+13=45_10

Common Data Types and Sizes in Microcontrollers: Programmers working with
microcontrollers must be acutely aware of the sizes of data units, as memory is often
a very constrained resource.

● Bit (Binary Digit): The smallest unit of information, representing a 0 or a 1.
● Nibble: A group of 4 bits. Often used when discussing hexadecimal digits.
● Byte: A group of 8 bits. This is the most common addressable unit of memory

in most microcontroller architectures. A byte can represent 28=256 distinct
values (from 0 to 255).

● Word: The natural data size that a particular CPU processes efficiently. This
varies by architecture.

○ For an 8-bit microcontroller (like the 8051), a "word" often refers to an
8-bit byte.

○ For a 16-bit microcontroller, a word is typically 16 bits (2 bytes).
○ For a 32-bit microcontroller, a word is typically 32 bits (4 bytes).

● Double Word (Dword): A data unit twice the size of a word. For a 16-bit word, a
double word is 32 bits. For a 32-bit word, a double word is 64 bits.

● Kilobyte (KB): 210 bytes = 1024 bytes.
● Megabyte (MB): 220 bytes = 1024textKB = 1,048,576 bytes.
● Gigabyte (GB): 230 bytes = 1024textMB = 1,073,741,824 bytes.

A firm understanding of these number systems and data sizes is foundational to
correctly interpreting memory addresses, managing data storage, and efficiently
implementing algorithms within the constrained environment of microcontrollers.

1.5 Introduction to Assembly Language: Purpose and Basic Concepts

While the underlying hardware of a microcontroller operates on raw binary machine
code, writing programs directly in sequences of 0s and 1s is impractical and prone to
errors for humans. This is where assembly language becomes an indispensable tool.
It serves as a symbolic, human-readable representation of machine code, bridging the
gap between high-level human thought and low-level machine execution.

What is Assembly Language? Assembly language is a low-level programming
language that utilizes mnemonics (short, symbolic abbreviations) to represent each
specific machine code instruction of a particular CPU architecture. Crucially, there is
typically a one-to-one correspondence between an assembly language instruction
and its corresponding machine code instruction.

● Mnemonics: These are easy-to-remember abbreviations for operations.
○ MOV: For "Move" (copy data from one location to another)
○ ADD: For "Addition"
○ SUB: For "Subtraction"
○ JMP: For "Jump" (unconditional transfer of program control)
○ JZ: For "Jump if Zero" (conditional transfer of program control)
○ IN: For "Input" (read data from an I/O port)
○ OUT: For "Output" (write data to an I/O port)

● Assembler: A specialized software program called an assembler is used to
translate assembly language source code into executable machine code
(binary instructions) that the target CPU can directly understand and execute.
The process is typically: Assembly Source Code (.asm)
xrightarrowtextAssembler Object Code (.obj) xrightarrowtextLinker
Executable Machine Code (.hex, .bin)

Why Assembly Language is Used (Especially in Microcontrollers): Despite the
widespread adoption of high-level languages like C and C++ for microcontroller
programming, assembly language retains significant importance in specific scenarios
where maximum control, efficiency, or direct hardware interaction is paramount.

1. Direct Hardware Control and Bit Manipulation: Assembly language provides
unparalleled, direct control over the CPU's internal registers, specific memory
locations, and individual bits within I/O ports. This is critical for tasks that
demand precise control over hardware peripherals, such as toggling specific
pins, configuring communication interfaces at a low level, or reading individual
sensor bits. High-level languages often abstract away these details, making
direct manipulation more cumbersome or inefficient.

2. Performance Optimization and Critical Timing: For routines where execution
speed is absolutely critical (e.g., interrupt service routines that must respond

within a few microseconds, high-speed data acquisition, or real-time motor
control loops), hand-optimized assembly code can often achieve superior
performance compared to code generated by even highly optimized compilers.
An expert assembly programmer can exploit specific architectural nuances
and generate instruction sequences that minimize clock cycles.

3. Minimal Memory Footprint: Assembly language programs typically have a
smaller compiled code size than equivalent programs written in high-level
languages. In deeply embedded microcontrollers with very limited program
memory (e.g., a few kilobytes), every byte saved is precious, allowing more
functionality to be squeezed into the available resources.

4. Bootstrapping and Initialization: The very first instructions executed by a
microcontroller upon power-up or reset are often written in assembly
language. This "bootstrapping" code is responsible for setting up the basic
CPU environment, initializing memory controllers, configuring stack pointers,
and preparing the system to jump to the main application code (which might be
written in C).

5. Debugging and Low-Level Analysis: When diagnosing complex
hardware-software interaction issues, particularly at the silicon level,
understanding the underlying assembly code (often viewed in a debugger) is
essential. It allows developers to see exactly what instructions the CPU is
executing, how registers are changing, and how memory is being accessed,
providing critical insight into system behavior.

6. Understanding CPU Architecture: Learning to program in assembly for a
specific microcontroller provides an in-depth understanding of its internal
architecture, including its instruction set, register set, addressing modes, and
data pathways. This knowledge is invaluable even when primarily
programming in a high-level language, as it helps in writing more efficient C
code and effectively debugging.

Basic Concepts and Syntax Structure: While specific syntax varies by processor
architecture, common elements define assembly language:

● Instruction Format: Most assembly instructions follow a general format:
[Label:] Mnemonic [Operand1] [, Operand2] [; Comment]

● Instructions (Opcodes): These are the mnemonics that tell the CPU what
operation to perform. Each mnemonic corresponds to a specific machine code
operation (e.g., ADD, SUB, MOV, JMP).

● Operands: The data or memory addresses that an instruction operates on.
Operands can be:

○ Registers: Internal CPU storage locations (e.g., A, R0, PC, SP).
○ Immediate Data: A constant value directly provided in the instruction.

Often prefixed with # or $.
○ Memory Addresses: The specific location in RAM or ROM.
○ I/O Port Addresses: The address of an input or output peripheral

register.
● Numerical Example (Instruction with Operands): Consider an instruction for an

8051 microcontroller: MOV A, #25H

○ MOV: The mnemonic (opcode) for "Move byte".
○ A: The Accumulator register (destination operand).
○ #25H: The immediate hexadecimal value 25_16 (which is 37_10) (source

operand). The # indicates immediate data.
○ Meaning: This instruction tells the CPU to load the constant value 25_16

directly into the Accumulator register.
● Numerical Example (Instruction with Memory Operand): MOV R0, 30H

○ MOV: Move instruction.
○ R0: General Purpose Register R0 (destination).
○ 30H: Memory address 30textH (source).
○ Meaning: This instruction tells the CPU to read the byte stored at

memory address 30textH and copy it into General Purpose Register R0.

Labels: Symbolic names given to specific memory addresses where instructions or
data are located. Labels simplify program flow control (e.g., jumping to a subroutine
or looping back to a specific point) as the programmer doesn't need to manually
calculate the exact memory address. The assembler resolves labels into their
corresponding numerical addresses during assembly.
Example:
Code snippet
START: MOV R0, #00H ; Initialize R0 to zero
 INC R0 ; Increment R0
 JNZ START ; If R0 is not zero, jump back to START

● Here, START is a label. JNZ START instructs the CPU to jump to the memory
address corresponding to the START label if the Zero Flag is not set.

● Directives (Pseudo-operations): These are commands specifically for the
assembler program, not for the CPU itself. They control how the assembler
processes the code, define data areas, reserve memory, or set the starting
address for code. They do not generate machine code directly.

○ ORG (Origin): Sets the program counter's starting address for the
assembled code.

■ Example: ORG 0000H tells the assembler that the following code
should be placed starting at memory address 0000textH.

○ DB (Define Byte): Used to define byte-sized data values in memory.
■ Example: DATA1: DB 25H, 0AH, 32H defines three bytes with

values 25textH, 0AtextH, and 32textH starting at the address
labeled DATA1.

○ DW (Define Word): Similar to DB but defines word-sized data.
○ END: Marks the end of the assembly source file.

● Comments: Explanatory text added to the assembly code by the programmer
to make it more understandable. Comments are ignored by the assembler but
are invaluable for code readability and maintenance. They are typically
indicated by a specific character (e.g., ; in 8051 assembly, // or * in others) at

the beginning of the comment.
Example: MOV A, #05H ; Load 5 into Accumulator

While this module provides a foundational introduction, future modules will delve into
specific instruction sets and practical assembly programming for different
microcontroller architectures, building upon these core concepts. This
comprehensive understanding forms the bedrock for effectively working with any
microcomputer or microcontroller system.

	Module 1: Foundations of Microcomputer Systems
	1.1 Introduction to Microcomputer Systems: Definition, Evolution, and Applications
	1.2 Building Blocks of a Microcomputer: CPU, Memory, and I/O Units – A Detailed Breakdown
	1.2.1 Central Processing Unit (CPU)
	1.2.2 Memory Subsystem
	1.2.3 Input/Output (I/O) Units

	1.3 Memory Organization and Addressing: RAM, ROM, and Different Memory Types
	1.4 Data Representation and Number Systems: Binary, Hexadecimal, and Their Relevance in Microcontrollers
	1.4.1 Binary Number System (Base-2)
	1.4.2 Hexadecimal Number System (Base-16)

	1.5 Introduction to Assembly Language: Purpose and Basic Concepts

